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for Alzheimer's disease 
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Supplementary 
Supplementary Results 

Comparison to Jansen et al. (2019) 
 
In comparison to our previous meta-analysis1, we failed to replicate the association of 

ADAMTS4, HESX1, CNTNAP2, KAT8, SCIMP, ALPK2, and AC074212.3 in the current 
study (Supplementary Table 5). The lead variants in ADAMTS4, KAT8, SCIMP, and ALPK2 
all had P-values smaller than 3x10-6 (Supplementary Figures 11-14), there was relatively 
small support for the lead variant in AC074212.3 (P=2.96x10-5) with the majority of the 
support coming from the UK Biobank (UKB) (P=1.80x10-5) and IGAP (P=1.22x10-4) datasets 
(Supplementary Figure 15). The lead variants for HESX1 and CNTNAP2 identified in 
Jansen et al. (2019)1 were rare variants so they were largely excluded from the meta-
analysis (except the lead variant of HESX1 which was present in the 23andMe dataset; 
P=0.70). The failure to replicate these loci can be attributed to the low significance of the 
lead variants in the datasets which are included in our study but not included in Jansen et al. 
(2019)1 (Finngen, GR@CE, HUNT, BioVU, 23andMe, Gothenburg H70 Birth Cohort Studies 
and Clinical AD from Sweden (Gothenburg), ANMerge). 

 

Proxy vs case-control LOAD 
 

The genetic correlation between the proxy LOAD GWAS results and the case-control 
LOAD results was 0.83 (SE=0.21, P=6.61x10-5), which is on par with the genetic correlation 
between proxy and case-control LOAD in our previous study1. The high correlation suggests 
that the proxy design is a good estimate for LOAD status when the genotyped individual is 
too young to present the phenotype. However, there are differences between the results 
when specifying the phenotypes differently. Supplementary Figure 1 shows that the 
previously unidentified regions identified in the full meta-analysis do not have much 
significance in the proxy data alone. The TMEM106B, GRN, and NTN5 regions did not have 
any variants with a P-value <0.0005 so none of the variants in that region were included in 
the Manhattan plot. Interestingly, TMEM106B and GRN are genes previously associated 
with frontotemporal dementia2 and one would expect the LOAD proxy results to be driving 
this association due to the inclusion of non-medically diagnosed individuals but the 
association signal appears to be absent in the proxy results. Supplementary Figure 2 shows 
that these genes do have relatively strong, albeit non-significant, signals in the results from 
the case-control data. Further exploration of the previously unidentified regions in an 
independent sample will be valuable in determining the role of these genes in LOAD. 

 

Genetic correlations 
 
Across 855 external phenotypes in LDhub3, two significant genetic correlations with 

the meta-analysis results were observed (Supplementary Table 6). The strongest 
correlation was with a previous LOAD study conducted by Lambert et al. (2013)4 (rg=1.18, 
SE=0.19, PBonferroni=2.42x10-7). The other significant correlation was with the UKB5 trait 
“Illnesses of mother: Alzheimer's disease/dementia” (rg=0.80, SE=0.11, PBonferroni=6.38x10-10). 
The current study included individuals which were also included in Lambert et al. (2013)4 
and the UKB. 
 

Genomic risk loci enrichment 
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Active chromatin enrichment 
 

The genomic risk loci (excluding the HLA-DRB1 (MHC) region) contained 45,479 
variants in total. An insight into the functional annotation of these variants may highlight 
potential routes from variant to phenotype. All the variants in the genome were annotated as 
being in active or inactive chromatin across 127 cell types based on the ROADMAP Core 
15-state model6 In all 127 cell types, the genomic risk loci variants were significantly 
enriched in variants within active chromatin compared to all variants included in the meta-
analysis (Supplementary Table 13). The odds ratio (OR) of enrichment ranged from 4.34 to 
1.71, with the top 5 cell types consisting of immune related cell types (Supplementary 
Figure 16). The least enriched cell types were also significantly enriched compared to the 
rest of the genome, this is likely due to the genomic risk loci being located in gene dense 
regions which are likely to be more active in all cell types compared to the whole genome. 
The pattern of enrichment and proportion of active chromatin across the cell types prioritizes 
immune cells as cell types of interest. 

  
Functional consequence enrichment 
 

The variants within and outside the genomic risk loci were also compared based on 
their functional consequence determined by ANNOVAR7 (Supplementary Figure 17; 
Supplementary Table 14). The majority of the variants within the genomic risk loci are 
intronic and intergenic (prop=0.49, prop=0.36). The intergenic and ncRNA intronic variants 
were the only variant types to be significantly depleted in the genomic risk loci (OR=0.72, 
Pbonferroni=<1x10-323; OR=0.76, Pbonferroni=1.20x10-39), all other annotations, except ncRNA 
splicing variants, were significantly enriched. Splicing variants were the most enriched 
(OR=4.16, Pbonferroni=0.0098). These results suggest that the genomic risk loci are regions 
rich in genes, and that splicing may be an important mechanism through which effects of 
these genes on LOAD are regulated. 
 

 

Gene prioritization 
 
Previously unidentified loci 
 

The lead variant in locus 1 is a rare (MAF=0.0041) synonymous variant 
(rs113020870) located in AGRN (Supplementary Figure 18). The lead variant is supported 
by only a handful of other variants in LD (R2>0.1), one of which is near significance 
(rs575531402, P=2.24x10-7). Neither of these variants are known GTEx eQTLs. The lead 
variant is present in 3 datasets (23andMe, Finngen, and UKB). The effect direction in all 3 is 
the same and the P-values in the UKB and 23andMe datasets are below 5x10-4. AGRN 
codes for agrin, a protein which influences the functioning of excitatory synapse and the 
blood brain barrier and has been previously suggested to be important to neurological 
diseases like LOAD8. Another study identified that AGRN expression influenced amyloid-
beta homeostasis in mouse models of LOAD9. The follow-up analyses from our study does 
not strongly support AGRN as a LOAD causal gene, however previous literature provides 
some support that AGRN could be a causal gene for this locus. 

 
The lead variant (rs2452170, P=1.72x10-8) of locus 34 is located between FUT2 and 

MAMSTR (Supplementary Figure 19). This region maps to 16 genes, three of which 
include exonic variants with high CADD scores (>20). Of those mapped genes, CARD8, 
FAM83E, CA11, SEC1P, NTN5, and FUT2 are significantly differently expressed in bulk 
brain tissue of LOAD patients compared to controls10. FUT2 contains rs601338, a variant 
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with a CADD score of 52 which introduces a stop codon. FUT2 also contains another stop 
codon-introducing variant (rs602662), which has a CADD score of 22.5. The former variant 
has been previously associated with inflammatory bowel disease and Crohn’s disease11, and 
the latter was associated with B12 blood levels12. Another exonic variant (rs2287922) with a 
high CADD score (26.2) is located in RASIP1. RASIP1 appears to be involved with 
maintenance of the blood brain barrier13 and blood brain barrier malfunction has been 
observed in AD14. In a recent unpublished study, MAMSTR was identified as a gene which is 
differentially methylated in LOAD brains15. NTN5 was implicated through colocalization of 
the GWAS signal with an eQTL (rs2452170) in brain tissue (ROSMAP). The identified eQTL 
is the lead variant and also an eQTL for FUT2 and MAMSTR in GTEx brain tissue. NTN5 is 
highly expressed in neurogenic regions of the brain and is known to be involved in adult 
neurogenesis16. It is difficult to prioritize a gene at this locus because there is evidence from 
this study and previous literature for FUT2, MAMSTR, RASIP1, and NTN5. There is ~3.8Mb 
of distance between the lead variants of the APOE region and locus 34 (R2<0.001 in 1KG 
Europeans); however, the strength of the APOE region could be influencing this region so 
the interpretation of this locus is limited until further statistical and experimental analysis can 
identify the independence of locus 34. 

 
Loci with high confidence (PIP >0.95) fine-mapped variants 

 
Fine-mapping in locus 2 identified the lead variant (rs4663105) as the most likely 

causal variant (PIP=1). This variant is upstream of BIN1 and is an eQTL in GTEx brain 
tissue. BIN1 is a known LOAD gene and is thought to modulate tau pathology17. Fine-
mapping in locus 10 identified the lead variant (rs187370608) and rs143332484 as causal 
variants (PIP>0.98). The latter of which is a TREM2 missense variant with a CADD score of 
11.8. TREM2 is a known LOAD gene and has a role in microglia phagocytosis, and 
inflammation18. Fine-mapping in locus 16 identified a SPATC1 intronic variant (rs79832570) 
as a causal variant (PIP=0.97). However, we were unable to identify previous literature to 
support the role of this variant and SPATC1 in LOAD pathology. Another significant variant 
(rs34674752; P=5.54x10-9) in the region is a SHARPIN missense variant with a CADD score 
of 21.9. A previous study identified a rare variant in SHARPIN associated with inflammation 
and LOAD19. Fine-mapping in locus 22 highlighted the lead variant (rs11218343) as a high 
probability variant (PIP=1). The lead variant is a low CADD score (3.60) intron variant in 
SORL1. SORL1 is highly expressed in microglia in the Allen Human Brain Atlas20. SORL1 is 
a known LOAD gene and has been implicated in APP trafficking and amyloid build up21. 
Fine-mapping in locus 32 identified the lead variant (rs12151021) as a high probability 
causal variant (PIP=1). The lead variant is a low CADD score (3.09) intron variant in ABCA7. 
There is some previous evidence for ABCA7 in previous literature22. Five out of seven of the 
high PIP variants are the lead variants in their locus which suggests that the fine-mapping is 
not adding much additional information for gene prioritization. The two non-lead high PIP 
variants highlighted TREM2, a known LOAD gene, and SPATC1, a gene unlikely to be the 
causal gene. The fine-mapping analysis was limited by the use of an external reference 
panel and these results exemplify the importance of using very accurate LD information for 
fine-mapping. 

 
Loci which colocalized with eQTLs 
 

The signal in locus 19 colocalized with an eQTL for MADD in monocytes 
(BLUEPRINT). The lead variant (rs3740688) was the colocalized variant. The lead variant is 
a low CADD (0.37) intronic variant in SPI1 and an eQTL for 19 genes in GTEx tissues. The 
large spread of association signal and correlated gene expression makes prioritizing genes 
in this locus difficult. Colocalization implicated the lead variant (rs117618017) as the 
colocalized variant in locus 26. The lead variant colocalized with APH1B expression in 
immune cells and whole blood, which was also observed in Schwartzentruber et al. (2021)23. 
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The lead variant is an APH1B missense variant (CADD=10.57). The protein (aph-1 homolog 
B, gamma-secretase subunit ) encoded by APH1B is part of the g-secretase complex and 
has been implicated in APP processing24. The association signal in locus 30 colocalized with 
an eQTL for AC004687.2 in Th2 memory cells (Schmiedel). The implicated variant 
(rs2526377) is an upstream variant of MIR142 and an intron variant of TSPOAP1-AS1. 
MIR142 is a microRNA that is predicted to target genes related to inflammation and 
neurodegeneration in the brain25. TSPOAP1-AS1 has also been reported as a LOAD gene 
and is a marker of neuroinflammation26. Prioritizing a gene in this locus is difficult because 
prior evidence is sparse and colocalization identified a poorly understood gene 
(AC004687.2). In locus 31, the lead variant (rs6504163) was implicated through 
colocalization with an eQTL for ACE in brain (ROSMAP and BrainSeq) and monocyte 
(Schmeidel). The lead variant is upstream of ACE and is an eQTL in GTEx brain tissue. 
Deletion of ACE in LOAD mouse models has been shown to increase amyloid deposition27. 
An upstream CD33 variant (rs3865444) was implicated in locus 35 for colocalization with an 
eQTL for CD33 in monocytes (BLUEPRINT) and lymphoblastoid cell lines (TwinsUK). CD33 
is thought to affect microglia activation and amyloid clearance28. CASS4 was implicated in 
locus 37 by colocalization with eQTLs in monocytes (BLUEPRINT). The lead variant 
(rs6069737) was identified as the candidate for colocalization. The lead variant is a low 
CADD score (8.04) intronic variant in CASS4. CASS4 codes for scaffolding proteins and it 
has been speculated that these proteins interact with amyloid and tau transport29 but the role 
of CASS4 in LOAD is not well characterized30.  

 

Brain regional gene expression 
 

The regional brain expression of the genes implicated by eQTL mapping was 
examined using GAMBA31 (Supplementary Figure 20). The mean gene expression of the 
329 mapped genes were compared to a random selection of 329 significantly brain 
expressed genes which resulted in 27 regions which differed significantly (Supplementary 
Table 15). The significantly different regions with the highest mean were the left thalamus 
proper, caudal anterior cingulate, insula, pallidum, and postcentral gyrus. These regions 
have a range of functions including somatosensory function, emotion, and memory32–36. 
However, when the regional mean gene expressions of the mapped genes were compared 
to a random selection of genes (not just brain expressed genes) there were no significant 
differences between the mean gene expression of any region (Supplementary Table 15). 
This result may reflect the lack of brain specificity of the mapped genes and highlights the 
importance of narrowing down associated regions to individual causal genes. 

 

Polygenic risk score 
  
  We generated polygenic risk scores (PRS) to identify how well the meta-analysis 
results could predict LOAD status using meta-analysis results from a subset of the data. The 
Gothenburg H70 Birth Cohort Studies and Clinical AD from Sweden (Gothenburg) dataset 
(712 cases, 2523 controls) was used as the independent test set because it was the dataset 
with the largest number of cases of the available genotype-level data. To identify effect 
estimates and standard errors for the PRS analysis, we performed a METAL37 inverse-
variance weighted meta-analysis, this meta-analysis excluded the independent test set 
(Gothenburg) and the UKB data. The UKB data was excluded from the METAL meta-
analysis because the effect estimates of this dataset were calculated for a quantitative 
phenotype and were, therefore, not directly comparable to the other (case-control) datasets. 
The best model of the PRS analysis from the METAL meta-analysis results (43,013 cases 
and 715,456 controls) explained 5.3% of the variance in the Gothenburg data 
(Threshold=5x10-8; P=1.92x10-30) and 1.2% variance in the Gothenburg data 
(Threshold=5x10-8; P=1.83x10-8) when the larger APOE region (GRCh37: 19:40000000-
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50000000) was excluded from the model. These results are similar to the estimates 
identified in our previous meta-analysis1. We performed the same PRS using the UKB 
summary statistics and found similar performance to the case-control data with (R2= 0.066, 
Threshold=5x10-8; P=2.49x10-37) and without the larger APOE region (R2= 0.009, 
Threshold=5x10-8; P=2.49x10-37). The base model (without covariates) PRS of the case-
control and UKB models were included in a logistic regression where the combination of 
both PRS models explained slightly more variance than either alone (R2=0.075). 
 

Enrichment analyses using replicated loci 
 

Functional follow-up restricted to the significant regions which were previously 
identified in Kunkle et al. (2019)38 found similar results to the functional follow-up using the 
entire meta-analysis results (Supplementary Table 17). When significant loci which did not 
occur in Kunkle et al. (2019) were removed, spleen was no longer a significant associated 
tissue (PBonferroni= 0.16), one microglia dataset was no longer significantly associated 
(GSE104276_Human_Prefrontal_cortex_all_ages), and 4 gene-sets were no longer 
significantly associated (GO_bp:go_amyloid_precursor_protein_metabolic_process, 
GO_bp:go_positive_regulation_of_amyloid_beta_formation, 
GO_bp:go_immune_response_inhibiting_signal_transduction, 
GO_bp:go_positive_regulation_of_amyloid_precursor_protein_catabolic_process). The 
removal of significant loci which did not occur in Kunkle et al. (2019) caused the gain of one 
significant gene-set (GO_mf:go_apolipoprotein_binding). The genomic risk loci are 
significantly enriched for active chromatin in the same cell types in the full analysis and the 
analyses of only significant loci which occur in Kunkle et al. (2019). The same functional 
consequences are significantly associated with the genomic risk loci, except non-coding 
RNA exonic (ncRNA_exonic) variants, in the full analysis and the analyses of only significant 
loci which occur in Kunkle et al. (2019). Largely, this demonstrates that many of the 
enrichment findings are robust to the exclusion of significant loci which have only been 
identified in this study and previous meta-analysis which include proxy datasets. It also 
demonstrates that the addition of the loci identified in this study provide extra information on 
a genome wide and individual locus level.  

  



 11 

Supplementary Figures 
Supplementary Figure 1: Manhattan plot of the UKB proxy LOAD data indicates low 
association of the previously unidentified regions (green) identified in the full meta-analysis. 
Only variants with a P< 0.0005 are displayed so previously unidentified regions with P-
values larger than this are not observable. The P-values were identified through linear 
regression (two-sided test) and were not adjusted for multiple testing. AGRN, TNIP1, and 
LILRB2 are the only previously unidentified regions with P-values small enough to be 
displayed. The APOE region cannot be fully observed because the y-axis is limited to the top 
variant in the second most significant locus, -log10(1x10-60), in order to display the less 
significant variants. The red line represents genome wide significance (5x10-8). 
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Supplementary Figure 2: Manhattan plot of the meta-analysis results of the LOAD case-
control data (UKB data excluded) indicates the association of the previously unidentified loci 
(green) identified in the full meta-analysis. Only variants with a P< 0.0005 are displayed. The 
P-values were identified through a meta-analysis (two-sided test) of summary statistics 
generated by logistic regressions (two-sided test) and were not adjusted for multiple testing. 
The APOE region cannot be fully observed because the y-axis is limited to the top variant in 
the second most significant locus, -log10(1x10-60), in order to display the less significant 
variants. The red line represents genome wide significance (5x10-8). The TNIP1/HAVCR2 
regions and the NTN5/LILRB2 regions are close enough together that they cannot be 
visually distinguished at this scale but are different genomic risk loci. 
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Supplementary Figure 3: MAGMA tissue specificity analysis identified spleen as the only 
GTEx tissue where expression of the MAGMA genes was significantly associated (one-sided 
test). The dotted line represents the significance threshold after Bonferroni correction for 30 
tests. The significantly associated tissue is highlighted in dark blue. The full results are 
available in Supplementary Table 6. 
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Supplementary Figure 4: Independent cell type associations based on within-dataset 
corrected analyses (one-sided test) identifies microglia as the only cell type of interest. Six 
single-cell datasets were significantly associated, after Bonferroni correction, with the 
expression of LOAD-associated genes. The dotted line represents the significance threshold 
after Bonferroni correction (P<5.39x10-5). Microglia were significantly associated in human 
lateral geniculate nucleus (P=1.11x10-7), human middle temporal gyrus (P=6.41x10-7), adult 
human brain (P=8.72x10-6), mouse hippocampus (P=1.15x10-5), human prefrontal cortex 
(P=1.28x10-5), and brain macrophage (microglia) mouse brain (P=8.11x10-6). 
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Supplementary Figure 5: Regional plot highlighting the lead variant of locus 7 and the 
nearby genes. There were no variants in LD with the lead variant in the 1KG European 
population so the LD estimates were obtained from the 1KG East Asian population to 
highlight variants in LD with the lead variant. The P-values were identified through a meta-
analysis (two-sided test) of summary statistics generated by linear/logistic regressions (two-
sided test) and were not adjusted for multiple testing. 
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Supplementary Figure 6: Regional plot highlighting the lead variant of locus 8 and the 
nearby genes. The LD information was obtained from the 1KG European population. The P-
values were identified through a meta-analysis (two-sided test) of summary statistics 
generated by linear/logistic regressions (two-sided test) and were not adjusted for multiple 
testing. 
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Supplementary Figure 7: Regional plot highlighting the lead variant of locus 12 and the 
nearby genes. The LD information was obtained from the 1KG European population. The P-
values were identified through a meta-analysis (two-sided test) of summary statistics 
generated by linear/logistic regressions (two-sided test) and were not adjusted for multiple 
testing. 

 
 
  



 18 

Supplementary Figure 8: Regional plot highlighting the lead variant of locus 28 and the 
nearby genes. The LD information was obtained from the 1KG European population. There 
was no LD information for the lead variant so the nearest significant variant with LD 
information was chosen as the LD reference variant (rs5848). The P-values were identified 
through a meta-analysis (two-sided test) of summary statistics generated by linear/logistic 
regressions (two-sided test) and were not adjusted for multiple testing. 
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Supplementary Figure 9: Regional plot highlighting the lead variant of locus 36 and the 
nearby genes. The LD information was obtained from the 1KG European population. The P-
values were identified through a meta-analysis (two-sided test) of summary statistics 
generated by linear/logistic regressions (two-sided test) and were not adjusted for multiple 
testing. 
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Supplementary Figure 10: The predicted power of our meta-analysis to explain the total 
heritability from chromosome 19 (a) and all other autosomes (b). The current sample size 
estimate is indicated by the black point. A(Neff) represents the proportion of SNP heritability 
explained by the effective sample size. Log10(Neff) represents the log10 effective sample 
size.  
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Supplementary Figure 11: The per dataset Z-scores and P-values of the lead variant 
(rs4575098; 1:161155392:A:G) of the ADAMTS4 region in Jansen et al. (2019)1 outlines the 
contribution of each dataset to the non-significant result in the meta-analysis of this study. 
The Z-scores are aligned to the allele in brackets. The summary statistics were generated by 
linear/logistic regressions (two-sided test) and were not adjusted for multiple testing. The 
points represent the Z-scores in each dataset. 
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Supplementary Figure 12: The per dataset Z-scores and P-values of the lead variant 
(rs59735493; 16:31133100:A:G) of the KAT8 region in Jansen et al. (2019)1 outlines the 
contribution of each dataset to the non-significant result in the meta-analysis of this study. 
The Z-scores are aligned to the allele in brackets. The summary statistics were generated by 
linear/logistic regressions (two-sided test) and were not adjusted for multiple testing. The 
points represent the Z-scores in each dataset. 
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Supplementary Figure 13: The per dataset Z-scores and P-values of the lead variant 
(rs113260531; 17:5138980:A:G) of the SCIMP region in Jansen et al. (2019)1 outlines the 
contribution of each dataset to the non-significant result in the meta-analysis of this study. 
The Z-scores are aligned to the allele in brackets. The summary statistics were generated by 
linear/logistic regressions (two-sided test) and were not adjusted for multiple testing. The 
points represent the Z-scores in each dataset. 
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Supplementary Figure 14: The per dataset Z-scores and P-values of the lead variant 
(rs76726049; 18:56189459:C:T) of the ALPK2 region in Jansen et al. (2019)1 outlines the 
contribution of each dataset to the non-significant result in the meta-analysis of this study. 
The Z-scores are aligned to the allele in brackets. The summary statistics were generated by 
linear/logistic regressions (two-sided test) and were not adjusted for multiple testing. The 
points represent the Z-scores in each dataset. 
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Supplementary Figure 15: The per dataset Z-scores and P-values of the lead variant 
(rs76320948; 19:46241841:C:T) of the AC074212.3 region in Jansen et al. (2019)1 outlines 
the contribution of each dataset to the non-significant result in the meta-analysis of this 
study. The Z-scores are aligned to the allele in brackets. The summary statistics were 
generated by linear/logistic regressions (two-sided test) and were not adjusted for multiple 
testing. The points represent the Z-scores in each dataset. 
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Supplementary Figure 16: The top 5 and bottom 5 cell types where active chromatin is most 
enriched in genomic risk loci compared to the rest of the genome highlights immune cells as 
enriched for active chromatin in LOAD regions of interest. The y-axis represents the 
proportion of the genomic risk loci that are in active chromatin in that cell type. The colour 
and labels of the bars represents the odds ratio (OR) from a Fisher’s exact test (two-sided) 
comparing counts of variants in active chromatin in the genomic risk loci vs counts of 
variants in active chromatin in the rest of the genome. All OR were significantly different from 
1 after Bonferroni correction.  
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Supplementary Figure 17: ANNOVAR enrichment analyses identifies 10 significant 
differences between the number of annotations in the genomic risk loci compared to the rest 
of the genome. The y-axis represents the proportion of the genomic risk loci which falls into 
each annotation. The colour and the labels of the bars represents the odds ratio (OR) from a 
Fisher’s exact test (two-sided) comparing counts of annotations in the genomic risk loci vs 
counts of annotations in the rest of the genome. The asterisks (*) represent OR which are 
significantly different from 1 after Bonferroni correction. 
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Supplementary Figure 18: Regional plot of locus 1 indicating the lead variant and the nearby 
genes. The LD estimates are derived from the 1KG European population. The P-values 
were identified through a meta-analysis (two-sided test) of summary statistics generated by 
linear/logistic regressions (two-sided test) and were not adjusted for multiple testing. 
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Supplementary Figure 19: Regional plot highlighting the lead variant of locus 34 and the 
nearby genes. The LD information was obtained from the 1KG European population. There 
was no LD information for the lead variant so the nearest suggestive variant with LD 
information was chosen as the LD reference variant (rs2638281). The P-values were 
identified through a meta-analysis (two-sided test) of summary statistics generated by 
linear/logistic regressions (two-sided test) and were not adjusted for multiple testing. 
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Supplementary Figure 20: The mean gene expression of 329 genes linked to risk loci 
through eQTL mapping across 64 brain regions highlights the top 10 regions with the highest 
expression. Gene expression values are obtained from the Allen Human Brain Atlas.   
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Supplementary Methods 

Datasets 
 
deCODE 
 

Data from the deCODE study included 7,002 Alzheimer's patients (5,098 of whom 
were chip-typed) and 181,573 controls (88,739 of whom were chip-typed). In 15% of 
patients, the diagnosis of Alzheimer's disease was established at the Memory Clinic of the 
University Hospital according to the criteria for definite, probable, or possible Alzheimer's 
disease of the National Institute of Neurological and Communicative Disorders and Stroke 
and the Alzheimer's Disease and Related Disorders Association (NINCDS-ADRDA). In 80% 
of patients, the diagnosis has been registered according to the criteria for code 331.0 in ICD-
9, or for F00 and G30 in ICD-10 in health records. Five percent of the patients were 
identified in the Directorate of Health medication database as having been prescribed 
Donepezil (Aricept). The controls were drawn from various research projects at deCODE 
Genetics. The study was approved by the National Bioethics Committee and the Icelandic 
Data Protection Authority. Written informed consent was obtained from all participants or 
their guardians before blood samples were drawn. All sample identifiers were encrypted in 
accordance with the regulations of the Icelandic Data Protection Authority. 
 

Chip-typing and long-range phasing of 155,250 individuals was carried out as 
described previously39. Imputation of the variants found in 28,075 whole-genome sequenced 
individuals into the chip-typed individuals and 285,664 close relatives was performed as 
detailed earlier39. Association analysis in the deCODE sample was carried out using logistic 
regression with AD status as the response and genotype counts and a set of nuisance 
variables, including sex, county of birth, and current age, as predictors40. Correction for 
inflation of test statistics due to relatedness and population stratification in this Icelandic 
cohort was performed using the intercept estimate (1.30) from LD score regression41. 
 
UK Biobank 

The UK Biobank (UKB; www.ukbiobank.ac.uk)5 summary statistics for 46,613 cases 
and 318,246 controls were obtained from Jansen et al. (2019)1. In short, a proxy phenotype 
for Alzheimer’s disease case-control status was generated from a self-report questionnaire 
which asked participants to report whether their biological mother or father ever suffered 
from Alzheimer’s disease/dementia, and to report each parent’s current age (or age at 
death, if applicable). The phenotype was constructed as a count of the number of affected 
parents ranging from 0 to 2. The contribution for each unaffected parent to the phenotype 
was weighted by the parent’s age/age at death. This was calculated as the ratio of parent’s 
age to age 100 (weight=(100-age)/100). The weight for an unaffected parent was capped at 
0.32, corresponding to a risk equivalent to that of the maximum population prevalence of 
AD.  Participants with a diagnosis of “Alzheimer’s disease” (code G30) or “Dementia in 
Alzheimer’s disease” (code F00) were given the maximum possible score of 2. Standard QC 
procedures were applied to the genotype data which was then imputed to the HRC42, 1KG43, 
and UK10K reference panels44. Further information on the quality control is available in 
Jansen et al. (2019)1. The imputed data was analyzed using linear regression with 12 
ancestry principal components, age, sex, genotyping array, and assessment centre included 
as covariates. All participants provided written informed consent; the UKB received ethical 
approval from the National Research Ethics Service Committee North West-Haydock 
(reference 11/NW/0382), and all study procedures were in accordance with the World 
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Medical Association for medical research. Access to the UK Biobank data was obtained 
under application number 16406.  

The Trøndelag Health Study (HUNT) 
 

The HUNT data consists of 1156 cases and 7157 controls, where cases were 
defined as individuals diagnosed with ICD-10 G30.0 or F00*, or ICD-9 331.0 and controls 
were individuals last seen as healthy with no previous diagnosis of Alzheimer’s disease. All 
controls were more than 80 years old. Participants overlapping with the DemGene study 
were removed. Further information about the biobank is available at https://hunt-
db.medisin.ntnu.no/hunt-db/#/.  
 

The samples were genotyped with Illumina HumanCoreExome arrays 
(HumanCoreExome12 v1.0, HumanCoreExome12 v1.1, or UM HUNT Biobank v1.0). 
Participants with call rates <99%, contamination >2.5%, large chromosomal copy number 
variants, lower call rate of technical duplicate pair or twins, uncommon sex chromosomal 
conformations, or discrepancies in reported gender were removed. The samples passing QC 
were analysed in a second round of genotype calling, using the Genome Studio quality 
control described elsewhere45. Variants were mapped to the Genome Reference Consortium 
Human genome build 37 (http://genome.ucsc.edu) using BLAT46.  
 

Variants were excluded if they had call rates <99%, higher call rates in another 
assay, probe sequences not mapping to the reference genome, cluster separation <0.3, 
gentrain score <0.15, or Hardy Weinberg equilibrium deviation (P-value<0.0001) from 
unrelated European samples. We also removed variants with frequency differences > 15% 
between the datasets or that were monomorphic in one dataset and had MAF > 1% in one of 
the others. Only European ancestry individuals were included. Ancestry was inferred using 
PLINKv1.9047, projecting the HUNT samples into the space of the principal components of 
the Human Genome Diversity Project panel48,49. The data was phased using Eagle2 v2.350, 
before imputing with Minimac3 v2.051, using a customized reference panel of HRC combined 
with 2,201 low-coverage whole-genome sequences HUNT samples. Variants with low 
estimated squared correlations between imputed and true genotypes (R2 <0.3) were 
excluded. A logistic regression analysis was run with SAIGE52, including sex, batch, and 4 
PCs as covariates.  

 
23andMe 

The 23andMe data consists of 3807 cases and 359,839 controls. Among the 
controls, there were 19,638 individuals between the age of 45-60 and 340,201 individuals 
over 60. There were 130 cases between 45-60 and 3677 cases over the age of 60. DNA 
extraction and genotyping were performed on saliva samples by National Genetics Institute 
(NGI), a CLIA licensed clinical laboratory and a subsidiary of Laboratory Corporation of 
America. Samples were genotyped on one of five genotyping platforms. The v1 and v2 
platforms were variants of the Illumina HumanHap550+ BeadChip, including about 25,000 
custom SNPs selected by 23andMe, with a total of about 560,000 SNPs. The v3 platform 
was based on the Illumina OmniExpress+ BeadChip, with custom content to improve the 
overlap with our v2 array, with a total of about 950,000 SNPs. The v4 platform was a fully 
customized array, including a lower redundancy subset of v2 and v3 SNPs with additional 
coverage of lower-frequency coding variation, and about 570,000 SNPs. The v5 platform, in 
current use, is an Illumina Infinium Global Screening Array (~640,000 SNPs) supplemented 
with ~50,000 SNPs of custom content. Samples that failed to reach 98.5% call rate were re-
analyzed. 
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Only individuals of European ancestry were included in the data. Individuals were 
assigned ancestry by first partitioning the phased genomic data into short windows of about 
300 SNPs. Within each window, a support vector machine (SVM) classified individual 
haplotypes into one of 31 reference populations (https://www.23andme.com/ancestry-
composition-guide/). The SVM classifications are then fed into a hidden Markov model 
(HMM) that accounts for switch errors and incorrect assignments, and gives probabilities for 
each reference population in each window. Finally, we used simulated admixed individuals 
to recalibrate the HMM probabilities so that the reported assignments are consistent with the 
simulated admixture proportions. Europeans were defined as those with ancestry 
probabilities of European + Middle Eastern > 0.97 and European > 0.90. Only unrelated 
individuals were used for the GWAS analysis. Individuals were defined as related if they 
shared more than 700 cM IBD, including regions where the two individuals share either one 
or both genomic segments IBD. Cases were preferentially chosen over controls.  
 

Variants were imputed in two separated imputation reference panels. For the first 
one, we combined the May 2015 release of the 1000 Genomes Phase 3 haplotypes43 with 
the UK10K44 imputation reference panel to create a single unified panel. We used the 
Human Reference Consortium (HRC) as the second imputation reference panel42. 
Participant data was phased using an internally-developed tool based on Beagle53 and a 
new phasing algorithm Eagle54. The phased participant data was imputed against both 
reference panels using Minimac44. The resulting imputed data was merged with HRC given 
preference over the merged panel. The imputed dosage data was analyzed using age, sex, 
platform, and PCs 1-4 as covariates. The association test P-value was computed using a 
likelihood ratio test.  
 

For QC of genotyped GWAS results, SNPs genotypes only on v1 and v2 platforms 
were flagged due to low sample size. SNPs on mitochondrial DNA and chromosome Y were 
flagged. Using trio data, SNPs that failed a test for parent-offspring transmission were 
flagged (specifically, child’s allele count was regressed against the mean parental allele 
count and flagged SNPs with fitted β<0.6 and P<10−20 for a test of β<1). SNPs with a Hardy-
Weinberg P<10−20, or a call rate of <90% were flagged. Genotyped SNPs with batch effects 
or date effects (P<10−50) were flagged. SNPs with large sex effect (ANOVA of SNP 
genotypes, r2>0.1) were flagged. SNPs with probes matching multiple genomic positions in 
the reference genome (‘self chain’) were flagged. For imputed GWAS results, SNPs with 
Rsq < 0.3, as well as SNPs that had strong evidence of a platform batch effect were flagged. 
The batch effect test is an F test from an ANOVA of the SNP dosages against a factor 
representing v4 or v5 platform (P<10−50). SNPs with a sample size <20% the total sample 
were flagged. These flagged SNPs were removed before analysis. Logistic regression 
results that did not converge due to complete separation, identified by abs(effect)>10 or 
stderr>10 on the log odds scale were removed. SNPs with MAF < 0.1% were removed. 
 
BioVU 
 

The BioVU data consists of 600 cases and 36,059 controls. Cases were defined as 
individuals diagnosed with ICD-10 G30 and ICD-9 331.0. Controls were individuals without 
any of the following ICD-10 diagnoses; G30, F01, F02, F03, F10.27, F10.97, F13.27, 
F13.97, F18.17, F18.27, F18.97, F19.17, F19.27, F19.97, G31.0, G31.83 and the following 
ICD-9 diagnoses; 331.0 ,290, 291.2, 292.82, 294.1, 294.10, 294.11, 294.2, 294.20, 294.21, 
331.19, 331.82. Individuals with a family history of dementia in their electronic health records 
were also excluded from the control sample. The participants were genotyped on the 
Illumina MEGAEX array. The genotypes were filtered for SNP and individual call rates, sex 
discrepancies, and excessive heterozygosity using PLINK (--geno 0.05, --mind 0.02, |Fhet| > 
0.2, HWE <10x10-10). Autosomes were imputed to the HRC panel using Michigan Imputation 
Server1 in five batches and converted to hardcalls using default PLINK threshold settings. 
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Non-biallelic SNPs were filtered out and SNPs with imputation quality (R2) less than 0.3. 
SNPs with minor allele frequency less than 0.005 were removed. SNPs with genotyping 
rates less than 0.98 were excluded. Individuals with call rates less than 0.98 were excluded.  

Principal component analysis (PCA) was used to determine BioVU individuals of 
European genetic ancestry. First, we performed PCA using FlashPCA55 on BioVU combined 
with CEU, YRI, and CHB reference sets from 1000 Genomes Project Phase 343. Principal 
components were scaled so that the axes could be interpreted as proportions of genetic 
ancestry. We selected BioVU individuals who were within 40% of the CEU cluster along the 
CEU-CHB axis and within 30% of the CEU cluster on the CEU-YRI axis, generating a once-
PCA filtered European set. To ensure subsequent steps would remove SNPs associated 
with reduced quality rather than cryptic population substructure, we filtered the previously 
identified BioVU European cluster to identify individuals falling within the CEU, TSI, and GIH 
1000 genomes populations, producing a twice-filtered European set. Using the twice-filtered 
European set we conducted a series of SNP checks. We filtered individuals with IBS greater 
than 0.2. We checked for imputation batch effects by conducting pairwise logistic regression 
of the five imputation batches using sex and top 10 principal components as covariates. 
SNPs with p-values less than 0.001 in the additive model were flagged. Any SNPs with a 
MAF difference greater than 0.1 between BioVU and CEU were flagged. SNPs with a Hardy-
Weinberg Equilibrium P-value less than 10x10-10 were flagged. Flagged SNPs were removed 
from the once-filtered European set. Individuals in the once-filtered European set and SNPs 
passing QC in the hardcall data were extracted from the dosage data. Finally, a GWAS was 
performed using SAIGE52 with default settings including sex and the top 10 PCs as 
covariates.   

DemGene, TwinGene, STSA, Gothenburg, and ANMerge 
 

The origin of the DemGene (1638 cases and 6059 controls), STSA (320 cases and 
750 controls), and TwinGene (224 cases and 6321 controls) samples has been previously 
described in Jansen et al. (2019). For the STSA data, informed consent was obtained from 
all participants and the studies were approved by the Regional Ethics Board in Stockholm 
and the Institutional Review Board at the University of Southern California. For the 
TwinGene data, written informed consent was obtained from all participants and the study 
was approved by the Regional Ethics Board in Stockholm. The ANMerge data (366 cases 
and 259 controls) consists of 3 batches. Batch 1 is available on synapse.org (synapse ID: 
syn2795014); the origin and genotyping of this data is described in Birkenbihl et al. (2021)56. 
Batch 2 and 3 were both genotyped on Illumina HumanOmniExpress-12 v1.0 and were 
merged after QC and removal of non-EUR individuals. The merged version of batch 2 and 
batch 3 were put through the same QC pipeline again and the batch associated variants 
were removed. Batch associated variants (P<5x10-8) were identified through assigning the 
batch 2 individuals as controls and batch 3 individuals as cases and running Plink logistic 
regression. 

The Gothenburg H70 Birth Cohort Studies and Clinical AD from Sweden 
(Gothenburg) AD cases originate from Sweden and were either collected in memory clinics 
(in different parts of Sweden) or as a part of two population-based epidemiological studies in 
Gothenburg; the Prospective Population Study of Women (PPSW) and the Gothenburg Birth 
Cohort Studies (H70, H85 and 95+), described in detail previously 57–60. Controls originate 
from the Gothenburg Birth Cohort Studies and PPSW. Individuals of non-European descent 
were excluded as part of the QC of the GWAS-data. AD diagnosis was based on National 
Institute of Neurological and Communicative Disorders and Stroke-Alzheimer’s Disease and 
Related Disorders (NINCDS-ADRA) criteria. All control samples were clinically investigated 
and free from dementia. The individuals were genotyped using the Illumina Neurochip array.  
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Initially, the genotype data were obtained in Plink v1.9027 binary format and, if 
necessary, were converted to build GRCh37 using the UCSC LiftOver tool28. The raw 
genotypes were processed using the Psychiatric Genomics Consortium (PGC) Ricopili 
pipeline version 2019_Aug_16.001. The quality control (QC) procedure initially removed 
SNPs with a missingness > 0.95, then kept individuals with a SNP missingness < 0.05 and 
an autosomal heterozygosity deviation (Fhet) < 0.2. Finally, SNPs with a missingness > 0.02, 
a difference in SNP missingness between cases and controls > 0.02; and deviation from 
Hardy-Weinberg equilibrium (P < 10−6 in controls or P < 10−10 in cases) were removed. 
  

Next, non-European individuals within the datasets were removed based on principle 
component analysis (PCA), using the 1KG Phase 3 dataset as a reference29. The PCA 
pipeline was repeated including all European individuals in all genotype level datasets to 
identify individuals across the datasets with a pihat > 0.2 for exclusion from the analysis. 
PCA was additionally performed within each European dataset to create principal 
component covariates for logistic regression. The genotype data of the European individuals 
were imputed to the Haplotype Reference Consortium reference (HRC r1.1 2016)30 using 
the Michigan Imputation Server31. The imputed genotypes within each dataset were 
analysed using Plink27 logistic regression adjusted for covariates. The covariates were 
principal components 1-4, plus principal components significantly associated with the 
phenotype, and sex. The significant principal components were identified by testing the first 
20 principal components for phenotype association and evaluating their impact on the 
genome-wide test statistics using λ. At the time of analysis age information was not available 
for use as a covariate however the cases and controls of each dataset were well matched in 
age (Supplementary Table 16). Unfortunately, only a fraction of age information for 
DemGene participants (40.4% of cases and 9.19% of controls) was available so age 
matching cannot be determined. 
 
IGAP 

The summary statistics from the International Genomics of Alzheimer's Project 
(IGAP)4 were obtained from https://www.niagads.org/datasets/ng00075. The stage 1 results 
were used in the meta-analysis. The stage 1 results were derived from genotyped and 
imputed data (11,480,632 variants, phase 1 integrated release 3, March 2012) of 21,982 
Alzheimer’s disease cases and 41,944 cognitively normal controls. Further information on 
the methods for generating the summary statistics and phenotyping are available in Kunkle 
et al. (2019)38. The data was generated using standard QC procedures. The genotypes were 
imputed to the 1KG reference panel43, analyzed with general linear mixed effects models 
and then meta-analyzed with METAL37. Written informed consent was obtained from study 
participants or, for those with substantial cognitive impairment, from a caregiver, legal 
guardian or other proxy, and the study protocols for all populations were reviewed and 
approved by the appropriate institutional review boards.  

Finngen 

The summary statistics for 1798 cases and 72206 controls from Finngen were 
obtained from https://storage.googleapis.com/finngen-public-data-
r3/summary_stats/finngen_r3_AD_LO_EXMORE.gz. The genotype data were quality 
controlled with a standard protocol, imputed to SISu v3 reference panel, and analysed using 
SAIGE52. Thorough documentation of data sourcing and processing is available at 
https://finngen.gitbook.io/documentation/. Cases were defined as being diagnosed with ICD-
10 G301, further information regarding the phenotype is available at 
https://risteys.finngen.fi/phenocode/AD_LO.  
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GR@CE 
 

The GR@CE data from Moreno-Grau et al. (2020)61 was obtained through the 
GWAS catalog portal (ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/Moreno-
GrauS_31473137_GCST009020/GRACE_StageI.txt). The phenotype was determined 
through structured neurological evaluation. The data was quality controlled using standard 
procedures, the genotypes were imputed to the HRC reference panel42, and the dosages 
were analysed using an additive model in PLINK v1.947 with the top 4 PCs as covariates. 
Further information is available in Moreno-Grau et al. (2020)61. 
 

Brain regional gene expression 
 

The per-region mean gene expression of the genes that map to the genomic risk loci 
based on eQTL expression was calculated using GAMBA (alpha version)31. A full description 
of the methods of GAMBA is available in Wei et al. (2021)62. In short, the gene expression 
data was obtained from the Allen Human Brain Atlas (http://human.brain-map.org) and the 
tissue samples were mapped to 64 FreeSurfer cortical and subcortical brain regions to 
generate a mean regional expression for each gene. Linear regression was used to compare 
the regional expression of the tested gene-set and the regional expression of the null model 
gene-set. The tested gene-set included 329 genes that mapped to genomic risk loci based 
on eQTLs and were present in the GAMBA gene expression data. The brain gene null model 
gene-set was composed of 329 randomly selected genes which are significantly over-
expressed in the brain compared to other GTEx tissues. The random gene model was 
composed of 329 randomly selected genes with regional gene expression values in GAMBA.  

 

Polygenic risk score 
 

We generated the polygenic risk scores (PRS) using PRSice63. The meta-analysis 
summary statistics used for prediction were generated using a METAL37 inverse-variance 
weighted meta-analysis. The Gothenburg dataset was excluded from the METAL meta-
analysis to act as an independent test set because it was the dataset with the largest 
number of cases. The UKB data was excluded from the METAL meta-analysis because the 
effect estimates of this dataset were calculated for a quantitative phenotype, whereas the 
effect estimates of all other datasets were calculated for a case-control phenotype. It is not 
appropriate to include datasets with phenotypes on different scales in an inverse-variance 
weighted analysis so the UKB data was excluded. The datasets were quality controlled 
using the same procedures as the larger mvGWAMA meta-analysis (described above). 
Clumping of the summary statistics was performed using PRSice with clumping of regions 
<250kb apart and in at least low LD (r2>0.1). The Gothenburg dataset was quality controlled, 
imputed, and converted to hard-called genotypes as described above before being utilized 
as the independent test set. The following P-value thresholds were tested 1, 0.5-0.0001 (by 
intervals of 0.0001), 5.005x10-5, and 5x10-8. Significantly associated principle components 
and sex were used as covariates in the PRS models. Versions of the PRS analyses were 
performed without the larger APOE region (GRCh37: 19:40000000-50000000). The PRS 
utilizing UKB data was performed in the same way as the meta-analysis PRS. To estimate 
the variance explained by a combination of the UKB and meta-analysis PRS, base model 
PRS (no covariates) were generated and a regression was performed to estimate the 
variance explained by the model. The regression included the Gothenburg case-control 
status as the outcome variable and the individual PRS for each model (UKB and meta-
analysis) as predictors.  
 



 37 

Enrichment analyses using replicated loci 
 

In order to perform gene-set enrichment analysis with just the significant loci 
identified in Kunkle et al. (2019)38 and non-significant loci, the following genomic regions 
(GRCh37) were removed:  
AGRN (1:985377-1057677), NCK2 (2:106122777-106235428), CLNK (4:11014822-
11044972), TNIP1 (5:150432388-150432388), HAVCR2 (5:156506344-156547031), MHC 
(6:32180146-32713511), TMEM106B (7:12233848-12285140), SHARPIN (8:145018354-
145158607), USP6NL/ECHDC3 (10:11487834-11723537), CCDC6 (10:61629823-
61785671), ADAM10 (15:58838575-59272096), APH1B (15:63441242-63595878), 
SCIMP/RABEP1 (17:4958842-5013491), GRN (17:42430244-42590812), ABI3 
(17:47297297-47475549), TSPOAP1-AS1 (17:56398006-56410041), ACE (17:61545779-
61578207), NTN5 (19:49168942-49252574), CD33 (19:51710654-51737991), LILRB2 
(19:54814234-54834217), APP (21:27473875-27563105). The MHC region was removed in 
order to compare to the results from the full analysis. The analyses were performed with the 
same specifications as the full gene-set analyses, with the exception that the additional 
analyses with the larger APOE region excluded was not performed. The active chromatin 
and functional consequence enrichment analyses were performed with the same 
specifications as the full analyses with the previously mentioned genomic regions excluded.   
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